229 lines
9.0 KiB
Python
229 lines
9.0 KiB
Python
import pandas as pd
|
|
import numpy as np
|
|
from sklearn.feature_extraction.text import TfidfVectorizer
|
|
from sklearn.metrics.pairwise import cosine_similarity
|
|
from collections import defaultdict
|
|
from datetime import datetime
|
|
|
|
|
|
class PreferenceAnalyzer:
|
|
def __init__(self):
|
|
self.vectorizer = TfidfVectorizer()
|
|
# 定义类别之间的相关性矩阵
|
|
self.category_similarity = {
|
|
'科幻': {'科技': 0.6, '文学': 0.3},
|
|
'科技': {'科幻': 0.6, '教育': 0.4},
|
|
'文学': {'历史': 0.4, '哲学': 0.5},
|
|
'历史': {'哲学': 0.4, '文学': 0.4},
|
|
'哲学': {'文学': 0.5, '历史': 0.4},
|
|
'经济': {'教育': 0.3, '科技': 0.3},
|
|
'教育': {'科技': 0.4, '经济': 0.3}
|
|
}
|
|
|
|
def analyze_reading_pattern(self, user_history):
|
|
"""分析用户阅读模式"""
|
|
if not user_history:
|
|
return {}
|
|
|
|
df = pd.DataFrame(user_history)
|
|
|
|
patterns = {
|
|
'偏好时段': self._analyze_reading_time(df),
|
|
'分类权重': self._calculate_category_weights(df),
|
|
'阅读完成度': self._analyze_completion_rate(df),
|
|
'阅读趋势': self._analyze_reading_trends(df),
|
|
'推荐类别': self._get_recommended_categories(df)
|
|
}
|
|
return patterns
|
|
|
|
def _analyze_reading_time(self, df):
|
|
"""分析用户的阅读时间模式"""
|
|
try:
|
|
# 将时间戳转换为datetime对象
|
|
df['timestamp'] = pd.to_datetime(df['timestamp'])
|
|
|
|
# 提取小时
|
|
df['hour'] = df['timestamp'].dt.hour
|
|
|
|
# 统计每个小时段的阅读次数
|
|
hourly_counts = df['hour'].value_counts().to_dict()
|
|
|
|
# 将小时分成时段
|
|
time_periods = {
|
|
'早晨 (6-9)': [6, 7, 8, 9],
|
|
'上午 (9-12)': [9, 10, 11, 12],
|
|
'下午 (12-18)': [12, 13, 14, 15, 16, 17, 18],
|
|
'晚上 (18-23)': [18, 19, 20, 21, 22, 23],
|
|
'深夜 (23-6)': [23, 0, 1, 2, 3, 4, 5]
|
|
}
|
|
|
|
period_counts = defaultdict(int)
|
|
for hour, count in hourly_counts.items():
|
|
for period, hours in time_periods.items():
|
|
if hour in hours:
|
|
period_counts[period] += count
|
|
|
|
# 找出最常阅读的时段
|
|
if period_counts:
|
|
preferred_period = max(period_counts.items(), key=lambda x: x[1])[0]
|
|
else:
|
|
preferred_period = "未知"
|
|
|
|
return {
|
|
'最佳阅读时段': preferred_period,
|
|
'时段分布': dict(period_counts)
|
|
}
|
|
|
|
except Exception as e:
|
|
return {'错误': f'分析阅读时间时出错: {str(e)}'}
|
|
|
|
def _calculate_category_weights(self, df):
|
|
"""计算各类别权重"""
|
|
try:
|
|
category_counts = df['category'].value_counts()
|
|
total_reads = len(df)
|
|
return {cat: count / total_reads for cat, count in category_counts.items()}
|
|
except Exception as e:
|
|
return {'错误': f'计算类别权重时出错: {str(e)}'}
|
|
|
|
def _analyze_completion_rate(self, df):
|
|
"""分析完成率"""
|
|
try:
|
|
if 'progress' in df.columns:
|
|
avg_progress = df['progress'].mean()
|
|
completion_stats = {
|
|
'平均进度': round(avg_progress, 2),
|
|
'已完成书籍': len(df[df['progress'] >= 95]),
|
|
'总书籍数': len(df),
|
|
'完成率': round(len(df[df['progress'] >= 95]) / len(df) * 100, 2)
|
|
}
|
|
return completion_stats
|
|
return {'错误': '没有进度数据'}
|
|
except Exception as e:
|
|
return {'错误': f'分析完成率时出错: {str(e)}'}
|
|
|
|
def get_reading_speed(self, df):
|
|
"""计算阅读速度"""
|
|
try:
|
|
if 'duration' in df.columns:
|
|
avg_duration = df['duration'].mean()
|
|
return {
|
|
'平均阅读时长': round(avg_duration, 2),
|
|
'总阅读时间': df['duration'].sum()
|
|
}
|
|
return {'错误': '没有时长数据'}
|
|
except Exception as e:
|
|
return {'错误': f'计算阅读速度时出错: {str(e)}'}
|
|
|
|
def _analyze_reading_trends(self, df):
|
|
"""分析阅读趋势"""
|
|
try:
|
|
df['timestamp'] = pd.to_datetime(df['timestamp'])
|
|
df = df.sort_values('timestamp')
|
|
|
|
# 计算每天的阅读时长
|
|
daily_reading = df.groupby(df['timestamp'].dt.date)['duration'].sum()
|
|
|
|
# 计算趋势
|
|
if len(daily_reading) > 1:
|
|
trend = np.polyfit(range(len(daily_reading)), daily_reading.values, 1)[0]
|
|
trend_direction = '上升' if trend > 0 else '下降' if trend < 0 else '稳定'
|
|
else:
|
|
trend_direction = '数据不足'
|
|
|
|
return {
|
|
'阅读趋势': trend_direction,
|
|
'日均阅读时长': round(daily_reading.mean(), 2),
|
|
'最长阅读时长': round(daily_reading.max(), 2)
|
|
}
|
|
except Exception as e:
|
|
return {'错误': f'分析阅读趋势时出错: {str(e)}'}
|
|
|
|
def _get_recommended_categories(self, df):
|
|
"""基于当前阅读偏好推荐类别"""
|
|
try:
|
|
# 获取当前阅读类别的权重
|
|
current_weights = df['category'].value_counts(normalize=True).to_dict()
|
|
|
|
# 计算推荐权重
|
|
recommended_weights = defaultdict(float)
|
|
for category, weight in current_weights.items():
|
|
# 考虑当前类别的相关类别
|
|
if category in self.category_similarity:
|
|
for related_cat, similarity in self.category_similarity[category].items():
|
|
recommended_weights[related_cat] += weight * similarity
|
|
|
|
# 排除已经经常阅读的类别
|
|
for category in current_weights:
|
|
if category in recommended_weights:
|
|
recommended_weights[category] *= 0.5
|
|
|
|
# 获取top3推荐类别
|
|
top_recommendations = sorted(
|
|
recommended_weights.items(),
|
|
key=lambda x: x[1],
|
|
reverse=True
|
|
)[:3]
|
|
|
|
return {
|
|
'推荐类别': [cat for cat, _ in top_recommendations],
|
|
'推荐理由': self._generate_recommendation_reasons(top_recommendations, current_weights)
|
|
}
|
|
except Exception as e:
|
|
return {'错误': f'生成类别推荐时出错: {str(e)}'}
|
|
|
|
def _generate_recommendation_reasons(self, recommendations, current_weights):
|
|
"""生成推荐理由"""
|
|
reasons = {}
|
|
for category, score in recommendations:
|
|
if score > 0:
|
|
# 找出与该类别最相关的当前阅读类别
|
|
related_categories = []
|
|
for curr_cat in current_weights:
|
|
if curr_cat in self.category_similarity and \
|
|
category in self.category_similarity[curr_cat]:
|
|
related_categories.append(curr_cat)
|
|
|
|
if related_categories:
|
|
reasons[category] = f"基于您对{','.join(related_categories)}的兴趣推荐"
|
|
else:
|
|
reasons[category] = "扩展阅读领域"
|
|
|
|
return reasons
|
|
|
|
def calculate_user_similarity(self, user1_history, user2_history):
|
|
"""计算用户相似度"""
|
|
try:
|
|
if not user1_history or not user2_history:
|
|
return {
|
|
'相似度': 0.0,
|
|
'共同兴趣': []
|
|
}
|
|
|
|
df1 = pd.DataFrame(user1_history)
|
|
df2 = pd.DataFrame(user2_history)
|
|
|
|
# 计算类别偏好相似度
|
|
cat_weights1 = df1['category'].value_counts(normalize=True)
|
|
cat_weights2 = df2['category'].value_counts(normalize=True)
|
|
|
|
# 使用余弦相似度计算
|
|
categories = set(cat_weights1.index) | set(cat_weights2.index)
|
|
vec1 = [cat_weights1.get(cat, 0) for cat in categories]
|
|
vec2 = [cat_weights2.get(cat, 0) for cat in categories]
|
|
|
|
similarity = cosine_similarity([vec1], [vec2])[0][0]
|
|
|
|
# 计算共同兴趣
|
|
common_interests = list(set(cat_weights1.index) & set(cat_weights2.index))
|
|
|
|
return {
|
|
'相似度': round(similarity, 2),
|
|
'共同兴趣': common_interests
|
|
}
|
|
except Exception as e:
|
|
return {
|
|
'错误': f'计算用户相似度时出错: {str(e)}',
|
|
'相似度': 0.0,
|
|
'共同兴趣': []
|
|
} |