from sentence_transformers import SentenceTransformer from sklearn.metrics.pairwise import cosine_similarity import numpy as np class TextSimilarityScorer: def __init__(self, model_name='bert-base-chinese'): # 初始化 BERT 模型,这里使用中文预训练模型 self.model = SentenceTransformer(model_name) def calculate_similarity(self, standard_answer, student_answer): # 获取文本嵌入 standard_embedding = self.model.encode([standard_answer]) student_embedding = self.model.encode([student_answer]) # 计算余弦相似度 similarity = cosine_similarity(standard_embedding, student_embedding)[0][0] return similarity def score(self, standard_answer, student_answer, max_score=100): # 计算相似度 similarity = self.calculate_similarity(standard_answer, student_answer) # 将相似度转换为分数 score = similarity * max_score # 四舍五入到整数 return round(score) # 使用示例 def main(): # 初始化评分器 scorer = TextSimilarityScorer() # 示例标准答案和学生答案 standard_answer = "机器学习是人工智能的一个子领域,它使用统计学方法让计算机系统能够从数据中学习和改进。" student_answers = [ "机器学习是AI的分支,通过统计方法让计算机从数据中学习。", # 相似但较简短 "哈哈哈哈哈哈。", # 比较相似 "人工智能是计算机科学的重要领域。" # 不太相关 ] # 对每个学生答案进行评分 for i, student_answer in enumerate(student_answers, 1): similarity = scorer.calculate_similarity(standard_answer, student_answer) score = scorer.score(standard_answer, student_answer) print(f"\n学生答案 {i}:") print(f"答案: {student_answer}") print(f"相似度: {similarity:.2f}") print(f"得分: {score}") if __name__ == "__main__": main()