This commit is contained in:
ovo 2025-01-11 10:34:32 +08:00
parent cb6fa04ca7
commit 9e230bf899
1 changed files with 52 additions and 0 deletions

52
text_similarity_scorer.py Normal file
View File

@ -0,0 +1,52 @@
from sentence_transformers import SentenceTransformer
from sklearn.metrics.pairwise import cosine_similarity
import numpy as np
class TextSimilarityScorer:
def __init__(self, model_name='bert-base-chinese'):
# 初始化 BERT 模型,这里使用中文预训练模型
self.model = SentenceTransformer(model_name)
def calculate_similarity(self, standard_answer, student_answer):
# 获取文本嵌入
standard_embedding = self.model.encode([standard_answer])
student_embedding = self.model.encode([student_answer])
# 计算余弦相似度
similarity = cosine_similarity(standard_embedding, student_embedding)[0][0]
return similarity
def score(self, standard_answer, student_answer, max_score=100):
# 计算相似度
similarity = self.calculate_similarity(standard_answer, student_answer)
# 将相似度转换为分数
score = similarity * max_score
# 四舍五入到整数
return round(score)
# 使用示例
def main():
# 初始化评分器
scorer = TextSimilarityScorer()
# 示例标准答案和学生答案
standard_answer = "机器学习是人工智能的一个子领域,它使用统计学方法让计算机系统能够从数据中学习和改进。"
student_answers = [
"机器学习是AI的分支通过统计方法让计算机从数据中学习。", # 相似但较简短
"哈哈哈哈哈哈。", # 比较相似
"人工智能是计算机科学的重要领域。" # 不太相关
]
# 对每个学生答案进行评分
for i, student_answer in enumerate(student_answers, 1):
similarity = scorer.calculate_similarity(standard_answer, student_answer)
score = scorer.score(standard_answer, student_answer)
print(f"\n学生答案 {i}:")
print(f"答案: {student_answer}")
print(f"相似度: {similarity:.2f}")
print(f"得分: {score}")
if __name__ == "__main__":
main()